Synthese und chemische Eigenschaften von Pentafluorbenzolselenonsäure und Derivatisierung der Trifluormethanselenonsäure

Alois Haas* und Karen Schinkel

Lehrstuhl für Anorganische Chemie II der Ruhr-Universität Bochum, Postfach 102148, D-4630 Bochum

Eingegangen am 5. September 1989

Key Words: Selenonic acid, pentafluorobenzene- / Selenonic acid, trifluoromethane-

Synthesis and Chemical Properties of Pentafluorobenzeneselenonic Acid and Derivatives of Trifluoromethaneselenonic Acid

Oxidation of C₆F₅SeO₂H with KMnO₄ in aqueous solution gives $C_6F_5SeO_3K$ (1a), which is converted into $C_6F_5SeO_3H$. 2H₂O by 70% HClO₄. Dehydration at 80°C in vacuo leads to C₆F₅SeO₃H (1), which is converted into its anhydride 1h by further dehydration at 200°C in vacuo. The acid is neutralized with MOH (M = Li, Na, NH₄, 1/2 Ba) to form the corresponding salts $C_6F_5SeO_3M$ (1b-e). By metatheses with M'NO $_3$ 1a is converted to $C_6F_5SeO_3M'$ [M' = Cs, Ag (1f, g)]. With RI or $(CH_3)_3SiCl$, respectively, $C_6F_5SeO_3Ag$ (1f) forms $C_6F_5SeO_3R$ $[R = CH_3, C_2H_5, n-C_3H_7, (CH_3)_3Si (2a-d)]. At -40°C, reaction$ between $C_6F_5SeO_3C_2H_5$ (2b) and (CH₃)₂NH leads to $C_6F_5SeO_2$ - $N(CH_3)_2$ (2e), which decomposes above -20 °C. If $(CH_3)_2NH$ is used in excess, 4-(CH₃)₂NC₆F₄SeO₂N(CH₃)₂ (2f) is formed. It hydrolyses to $[(CH_3)_2NH_2][4-(CH_3)_2NC_6F_4SeO_3]$ (2g). Chlorination of $C_6F_5SeO_2H$ with SO_2Cl_2 yields $C_6F_5Se(O)Cl$. Esterification of CF₃SeO₃H is accomplished by treating CF₃SeO₃Ag with C_2H_5I . The ester 3a reacts with $(CH_3)_2NH$ at -40°C to form CF₃SeO₂N(CH₃)₂ (3b), which like the pentafluorobenzene compound is also unstable above -20 °C.

Obwohl Benzolselenonsäure¹⁾ bereits 1906 und weitere Vertreter dieser Substanzklasse 1942 synthetisiert wurden. die meisten in Form ihrer Salze²⁾, ist über deren chemisches Verhalten bis heute nur wenig bekannt geworden. Die erste Perfluororganoselenonsäure – CF₃SeO₃H – ist erst 1985 hergestellt worden, und zwar in Form von Salzen bzw. einer wäßrigen Lösung³⁾. Alle Versuche, CF₃SeO₃H zu derivatisieren, scheiterten zunächst an der Labilität der CSe-Bindung. Ziel der vorliegenden Arbeit war es, in Anlehnung an die Stabilität der Benzolselenonsäure die entsprechende Pentafluorbenzolselenonsäure (1) zu synthetisieren und zu derivatisieren. Zusätzlich versuchten wir, Trifluormethanselenonsäure (3) zu verestern und diese Ester als Ausgangsmaterial für weitere Umsetzungen zu nutzen.

Die Darstellung von 1 erfolgt in zwei Stufen. Oxidation von Bis(pentafluorphenyl)diselenid⁴⁾ mit konzentrierter Salpetersäure ergibt zunächst Pentafluorbenzolseleninsäure⁵⁾, die nach Reaktion mit Kaliumpermanganat in Wasser und anschließender Neutralisation mit Kalilauge Kalium-pentafluorbenzolselenonat (1a) gemäß Gl. (1) liefert.

Umsetzung von 1a mit 74proz. Perchlorsäure führt unter Bildung von schwerlöslichem Kaliumchlorat(VII) zur Freisetzung von Säure 1, die nach schonendem Wasserentzug in Form eines stabilen Dihydrats isoliert werden konnte. Dehydratisierung bei 80°C im dynamischen Vakuum (10⁻³ Torr) führt zu 1, das bei 200°C/10⁻³ Torr in das stabile Pentafluorbenzolselenonsäure-anhydrid (1h) übergeführt werden konnte.

Zu den Salzen $C_6F_5SeO_3M$ (M = Li, Na, NH₄, 1/2 Ba) (1b−e) gelangt man durch sorgfältige Neutralisation einer wäßrigen Lösung von 1 mit den entsprechenden Basen und anschließendes Einengen der wäßrigen Lösung. Sie sind in Wasser gut löslich.

$$3 C_{6}F_{5}SeO_{2}H + 2 KMnO_{4} + KOH \longrightarrow$$

$$3 C_{6}F_{5}SeO_{3}K + 2 MnO_{2} + 2 H_{2}O$$

$$1a + HCIO_{4} \longrightarrow C_{6}F_{5}SeO_{3}H + KCIO_{4}$$

$$1$$

$$1 + MOH \longrightarrow C_{6}F_{5}SeO_{3}M + H_{2}O$$

$$1b-e \qquad (1)$$

$$1b 1c 1d 1e$$

$$M Li Na NH_{4} 1/2 Ba$$

$$1 + M'NO_{3} \longrightarrow C_{6}F_{5}SeO_{3}M' + HNO_{3}$$

$$1f: M' = Ag$$

$$1g: M' = Cs$$

Das schwerlösliche Silber- bzw. Caesiumsalz (1f, g) erhält man durch Zugabe von Silber- bzw. Caesiumnitrat, gelöst in Wasser, zu einer konzentrierten wäßrigen Lösung von 1a nach Gl. (1). Von den Salzen ist 1f infolge seiner besseren Löslichkeit in Chloroform⁶⁾ am reaktivsten und daher für Derivatisierungen gut geeignet. Mit Alkyliodiden reagiert 1f zu den entsprechenden Estern 2 nach Gl. (2). Bemerkenswert ist, daß sich während der Umsetzung von 1f mit Methyliodid neben dem Methylester (2a) in vergleichbaren Mengen auch Pentafluorbenzolselenonsäure-ethylester (2b) bildet. Die Entstehung von 2b war auch bei einem stöchiometrischen

Umsatz nicht zu unterbinden und ist somit von der CH₃I-Konzentration unabhängig. Eine ähnliche Beobachtung ist auch während der Reaktion von CF₃SO₃Ag mit CH₃I in Ether gemacht worden. Auch hier bildet sich neben Trifluormethansulfonsäure-methylester der entsprechende Ethylester⁷).

Verwendet man anstelle von Ether Chloroform als Lösungsmittel, so bildet sich aus CF₃SO₃Ag und CH₃I lediglich CF₃SO₃CH₃. Offensichtlich erfolgt die Ethylesterbildung durch CH₃/C₂H₅-Austausch zwischen CF₃SO₃CH₃ und C₂H₅OC₂H₅, wobei CF₃SO₃C₂H₅ und CH₃OC₂H₅ entstehen ⁷⁾. Die Bildung von **2b** muß daher auf die stark methylierende Eigenschaft von **2a** zurückgeführt werden. Die Ester sind bei 20 °C Öle ohne meßbaren Dampfdruck, deren Hydrolyseempfindlichkeit von **2a** zu **2c** stark abnimmt.

Die Umsetzung von 1f mit Chlortrimethylsilan führt zu 2d gemäß Gl. (2).

Bei der Hydrolyse von 2d bilden sich 1 und Hexamethyldisiloxan. Oberhalb 140°C zersetzt es sich zu 1h und ((CH₃)₃Si)₂O. Die Alkylester eignen sich als Ausgangssubstanzen zur Synthese von Selenonsäureamiden. Reaktionen von (CH₃)₂NH mit 2b führen, abhängig von Reaktionsbedingungen, zu 2e und 2f. Oberhalb – 20°C tritt Zersetzung unter Bildung von C₆F₅SeSeC₆F₅ und weiterer nicht näher identifizierter Produkte ein. In Anwesenheit von Luftfeuchtigkeit erfolgt Hydrolyse zu Dimethylammonium-4-(dimethylamino)-2,3,5,6-tetrafluorbenzolselenonat (2g).

Mit Chlorierungsmitteln wie SO₂Cl₂ läßt sich Pentafluorbenzolseleninsäure zu C₆F₅Se(O)Cl chlorieren. Versuche, Pentafluorbenzolselenonylchlorid durch Oxidation von C₆F₅Se(O)Cl mit KMnO₄ unter Phasentransfer-Katalyse zu synthetisieren, schlugen fehl. Das zur Veresterung von 1 angewandte Verfahren läßt sich auch auf 3 anwenden. Reaktionen von Silbertrifluormethanselenonat mit Ethyliodid in Chloroform führen zum Trifluormethanselenonsäureester 3a nach Gl. (3). Umsetzung von 3a mit NH(CH₃)₂ liefert bei

-40 °C in Chloroform Trifluormethanselenonsäure-dimethylamid (3b). Unterhalb -40 °C ist 3b beständig, oberhalb zersetzt es sich unter Abscheidung von Selendioxid und Bildung weiterer nicht identifizierter Produkte.

3 CF₃SeO₃H

$$CF_3SeO_3Ag + C_2H_5I \longrightarrow CF_3SeO_3C_2H_5 + AgI$$

$$3a + (CH_3)_2NH \longrightarrow CF_3SeO_2N(CH_3)_2 + C_2H_5OH$$

$$3b$$

Diskussion spektroskopischer Daten der C₆F₅Se(O)₂OX-Verbindungen

Zur Charakterisierung der neuen Verbindungen sind Infrarot-, Massen- und NMR-spektroskopische Untersuchungen durchgeführt worden. Chemische Verschiebungen und Kopplungskonstanten sind in Tab. 1 aufgeführt. Infrarotschwingungen, m/z-Werte und Molekülfragmente sind im experimentellen Teil angegeben.

IR-Spektren: Die Schwingungen des Pentafluorphenylrings liegen bei allen hier untersuchten Verbindungen im Bereich von 1640-975 cm⁻¹. In Anlehnung an die für den $C_6F_5S^{9,10}$ -Rest getroffenen Zuordnungen der Schwingungen der C_6F_5 -Gruppe werden $\nu(Ring)$ bei 1640 (m), 1515-1485 (s), 1385 (m) und 1285 (w) sowie $\nu(C-F)$ bei 975 (s) cm⁻¹ zugeordnet.

Für die -SeO₂O-Gruppe charakteristisch sind die Se = Ound SeO-Valenzschwingungen, wobei $v_{as}(Se = O)$ zwischen 979 und 900 cm⁻¹ und $v_s(SeO_2)$ bei 880–820 cm⁻¹ auftreten. Dagegen wird v(Se - O) nur für 1, 1h, 3a und 2a – d im Bereich 726–620 cm⁻¹ beobachtet. Pentafluorbenzolselenonate $(C_6F_5SeO_2O^-)$ weisen keine SeO-Valenzschwingung auf, da sie offensichtlich resonanzstabilisiert v_{as} - sowie $v_s(Se = O)$ im aufgeführten Bereich aufweisen.

Massenspektren: Alle C₆F₅SeO₂O-Verbindungen zeigen typische Abbaumuster, wobei eine Zuordnung der Fragmente durch das Auftreten der Selenisotopenverteilung erleichtert wird. In allen Fällen beobachtet man eine sukzessive Sauerstoffabspaltung, die zum C₆F₅Se⁺-Peak führt. Am Beispiel von 1 wird der Abbau am deutlichsten demonstriert.

NMR-Spektren: Von den NMR-Spektren (Tab. 1) sind die ⁷⁷Se-NMR-Messungen besonders aussagekräftig, da die chemische Verschiebung sehr empfindlich auf alle Veränderun-

Tab. 1. Chemische Verschiebungen δ und Kopplungskonstanten der erstmals hergestellten Perfluororganoselenonsäure-Verbindungen

	δ(⁷⁷ Se)	δ(¹⁹ F)	δ(¹³ C)	δ(¹H)
$(C_6F_5SeO_3)_n M(D_2O)$ $n = 1, M = Li,Na,K,Cs,NH_4 (1b,c,a,g,d)$	1001.5	-136.7 (F ² , F ⁶) -143.3 (F ⁴)		
n = 2, M = Ba (1e) $C_6F_5SeO_3H (1) (CH_3OD)$	1003.2	-156.6 (F ³ , F ⁵) -136.7 (F ² , F ⁶) -148.8 (F ⁴) -160.3 (F ³ , F ⁵)		
C ₆ F ₅ SeO ₃ CH ₃ (2a) ^{a)} (im Gemisch mit 2b)	${}^{3}J(Se,H) = 24 Hz$	-133.7 (F ² , F ⁶) -139.7 (F ⁴) -155.6 (F ³ , F ⁵)	56.0 (CH ₃)	4.15 (CH ₃)
$C_6F_5SeO_3C_2H_5$ (2b) ^{a)}	$^{1007.3}_{^3}J(\text{Se,H}) = 29 \text{ Hz}$	-133.7 (F ² , F ⁶) -140.0 (F ⁴) -156.3 (F ³ , F ⁵)	66.7 (CH ₂) 15.9 (CH ₃)	4.53 (CH ₂) 1.43 (CH ₃)
$C_6F_5SeO_3C_3H_7$ (2c)	1007.8	-133.9 (F ² , F ⁶) -144.6 (F ⁴) -156.0 (F ³ , F ⁵)	71.1 (CH ₂ O) 23.5 (CH ₂) 9.7 (CH ₃)	4.40 (CH ₂ O) 1.80 (CH ₂) 1.05 (CH ₃)
$C_6F_5Se(O)_2N(CH_3)_2$ (2e) (im Gemisch mit 2f)	1016.0	-137.4 (F ² , F ⁶) -147.5 (F ⁴) -159.0 (F ³ , F ⁵)	<i>31.</i> (C13)	1.05 (0113)
$4-(CH_3)_2NC_6F_4Se(O)_2N(CH_3)_2$ (2f)	1013.8	-137.5 (F3, F5) -150.5 (F ² , F ⁶)	44.0 (CH ₃ NSe) ^{b)} 43.9 (CH ₃ NSe) ^{b)} 42.6 (CH ₃ N – C) ⁴ J(C,F) = 5 Hz	3.04 (CH ₃ NSe) 3.13 (CH ₃ N – C)
$[4(CH_3)_2NC_6F_4SeO_3][NH_2(CH_3)_2]$ (2g)	1005.9	$-140.7 (F^3, F^4)$ -151.3 (F ² , F ⁵)	42.9 [(CH ₃) ₂ N – C] 35.1 [(CH ₃) ₂ NH ₂]	3.03 [(CH ₃) ₂ N – C)] 2.78 [(CH ₃) ₂ NH ₂]
$C_6F_5SeO_3Si(CH_3)_3$ (2d)°	982.4	$-134.2 ext{ (F}^2, ext{ F}^6)$ $-141.6 ext{ (F}^4)$ $-156.7 ext{ (F}^2, ext{ F}^5)$	1.95 (CH ₃)	0.48 (CH ₃)
C ₆ F ₅ Se(O)Cl	1257.9	-156.7 (F ² , F ⁵) -137.8 (F ² , F ⁶) -144.0 (F ⁴) -157.7 (F ³ , F ⁵)		
$CF_3SeO_3C_2H_5$ (3a)	$^{1027.9}_{^2}J(Se,F) = 153.3 \text{ Hz}$ $^{3}J(Se,H) = 18.4 \text{ Hz}$	-62.2	122.6 (CF ₃) 68.5 (CH ₂) 16.3 (CH ₃)	4.56 (CH ₂) 1.49 (CH ₃)
$CF_3Se(O)_2N(CH_3)_2$ (3b)	1026.9 $^2J(Se,F) = 113 Hz$	-70.9	122.0 (CF ₃) 41.0 (CH ₃)	

^{a) 19}F-entkoppelt. - ^{b)} Nicht äquivalente CH₃-Gruppen infolge gehinderter Rotation entlang der SeN-Bindung. - ^{c)} δ(²⁹Si) = 38.9.

gen der Elektronendichte des Selens reagiert. Mit steigender Oxidationsstufe ändert sich $\delta(^{77}Se)$ und beträgt für $C_6F_5SeSeC_6F_5 \delta = 352$, für $C_6F_5Se(O)OH 1208$ und für Se-(VI)-Verbindungen zwischen 1028 und 981. Anders als bei $CF_3Se(VI)$ -Verbindungen, wo ${}^2J(F,Se)$ bei 150-113 Hz liegt, und für CF₃Se(IV)-Derivate, für die etwa 50 Hz ermittelt wurden, können Se,F-Kopplungskonstanten zur Unterscheidung von Oxidationsstufen in C₆F₅Se-Verbindungen nicht herangezogen werden. Infolge komplizierter Kopplungsmuster konnten ³J(Se,F)-Werte nicht gemessen werden.

Experimenteller Teil

IR-Spektren: Feststoffe als KBr- oder RbCl-Preßlinge; Flüssigkeiten als Kapillarfilm zwischen KBr-Platten; Gase in einer Gasküvette (l = 10 cm) mit KBr-Fenstern; Bruker IFS 85 und IFS 66 FT. - NMR-Spektren: Als interne Locksubstanz diente CDCl₃, Abweichungen sind jeweils angegeben; die chemischen Verschiebungen δ werden auf folgende Standards bezogen angegeben: ⁷⁷Se: $\delta[(CH_1)_2Se] = O_1^{19}F: \delta(CFCl_1) = O_1^{13}C_1^{14}H_1^{29}Si: \delta[(CH_3)_4Si] =$ O, positive δ-Werte entsprechen einer Tieffeldverschiebung; Bruker WM 250 PFT. - Massenspektren: Varian-MAT CH 5 und CH 7, Energie des Ionenstroms 70 eV. – Elementaranalysen: Kohlenstoff-, Wasserstoff- und Stickstoffgehalte wurden durch oxidative Aufschlußverfahren bestimmt; teilweise wurden keine befriedigenden Elementaranalysen erhalten, da keine vollständige Verbrennung stattfindet bzw. schwerflüchtige Rückstände gebildet werden, Carlo-Erba-Elementanalyzer, Modell 1106.

Kalium-pentafluorbenzolselenonat (1a): In einem 250-ml-Kolben werden 5.23 g (18.6 mmol) C₆F₅SeO₂H in 75 ml H₂O aufgeschlämmt. Zu der gut gerührten Suspension tropft man eine Lösung von 2.0 g (12.7 mmol) KMnO₄ in 100 ml H₂O. Nach 24 h wird das ausgefallene MnO₂ über eine Fritte abgetrennt, das Filtrat mit wäßriger KOH neutralisiert (pH-Elektrode) und anschließend mittels eines Rotationsverdampfers zur Trockne eingeengt. Primär erhält man das als Monohydrat kristallisierende Produkt C₆F₅SeO₃K · H₂O, das charakterisiert wurde. Ausb. 4.47 g (72%).

C₆H₂F₅KO₄Se (351.1) Ber. C 20.5 H 0.57 Gef. C 20.2 H 0.5

Das Hydrat läßt sich im Exsikkator quantitativ innerhalb von 3 d in die wasserfreie Form überführen⁸⁾. Zers.-P. 285°C. – IR: $\tilde{v} = 1653 \text{ cm}^{-1}$ (s), 1530 (s), 1498 (vs), 1109 (s), 984 (vs), 945 (vs), 933 (vs), 886 (s).

Silber-pentafluorbenzolselenonat (1f): Zu einer eisgekühlten Lösung von 5.0 g (15.0 mmol) 1a in 80 ml H₂O tropft man eine eisgekühlte Lösung von 2.55 g (15.0 mmol) AgNO3 in 20 ml H2O. Das in kaltem Wasser schwerlösliche 1f wird über eine Fritte abgetrennt und im Exsikkator über P₄O₁₀ getrocknet. Ausb. 5.5 g (92%), Zers.-P. 305°C.

C₆AgF₅O₃Se (401.9) Ber. Ag 26.8 Gef. Ag 26.5, 26.4

Caesium-pentafluorbenzolselenonat (1g): Die Darstellung erfolgt analog zu der von 1f aus 1a und CsNO₃. Ausb. 5.8 g (90%), Zers.-P. 275°C.

C₆CsF₅O₃Se (426.9) Ber. C 16.9 Gef. C 16.2

Pentafluorbenzolselenonate⁸⁾ $C_6F_5SeO_3M$, M=Li (1b), Na (1c), NH_4 (1d), 1/2 Ba (1e): Eine wäßrige Lösung von 1.0 g (3.4 mmol) 1 (Darstellung s. u.) wird mit der stöchiometrischen Menge Base [LiOH, NaOH, Ba(OH)₂, NH₄OH] neutralisiert (pH-Elektrode) und die Lösung anschließend zur Trockne eingeengt. Die Salze entstehen nahezu quantitativ, sind farblos und kristallisieren mit Ausnahme von 1d in dünnen Platten, letzteres in Nadeln. Zers.-P. von $C_6F_5SeO_3Li$ 245°C. Das als Dihydrat kristallisierende 1b ist als solches charakterisiert.

C₆F₅H₄LiO₅Se (337.0) Ber. C 21.4 H 1.1 Gef. C 21.3 H 0.9

C₆F₅SeO₃Na (1c): Zers.-P. 275°C, C₆F₅SeO₃NH₄ (1d): 295°C, (C₆F₅SeO₃)₂Ba (1e): 280°C. – Die IR-Spektren und Massenspektren der Salze stimmen mit denen von 1a überein.

Pentafluorbenzolselenonsäure⁸⁾ (1): Zu einer bei 0°C gesättigten Lösung von 3.0 g (9.0 mmol) 1a in H₂O tropft man 1.28 g (9.0 mmol) 70proz. HClO₄, kühlt 3 h im Eisbad, filtriert ausgefallenes KClO₄ ab und engt das Filtrat i. Vak. bis zur beginnenden Kristallisation ein. Hierbei kristallisiert 1 zunächst in Form des Dihydrats aus. Ausb. 2.7 g (91%), Schmp. 120°C.

C₆H₅F₅O₅Se (331.1) Ber. C 21.8 H 1.5 Gef. C 21.8, 21.7 H 1.4, 1.3

Im dynamischen Vak. bei 80°C (10^{-3} Torr) erhält man nach 2 d quantitativ wasserfreies 1. Schmp. 160°C. – IR: $\tilde{v} = 3440$ cm⁻¹ (m, br), 2960 (m, br), 2440 (m, br), 1630 (m), 1521 (s), 1486 (vs), 1097 (s), 979 (vs), 938 (vs), 925 (vs), 877 (s), 691 (m), 634 (m), 438 (m). – MS (70 eV): m/z (%) = 296, M⁺ (12); 247, C₆F₅Se⁺ (31); 184, C₆F₅OH⁺ (100); 168, C₆F₅H⁺ (62).

Pentafluorbenzolselenonsāureanhydrid⁸⁾ (1h): Einwöchige Dehydratation von 2.0 g (6.8 mmol) 1 im dynamischen Vak. (10^{-3} Torr) bei 200 °C führt zu 1h. Die Wasserabspaltung läßt sich aufgrund einer partiellen Sublimation von 1 unter Bildung der hydratisierten Form nicht quantitativ verfolgen. Ausb. 1.7 g (86%), Zers.-P. 290 °C. – IR: $\tilde{v} = 1635 \text{ cm}^{-1}$ (m), 1515 (m), 1480 (vs), 1095 (s), 970 (vs), 930 (vs), 920 (vs), 870 (m), 680 (m), 415 (m). – MS (70 eV): m/z (%) = 574, M⁺ (1); 414, (C_6F_5)₂Se⁺ (30); 247, C_6F_5 Se⁺ (73); 112, SeO₂⁺ (100).

Pentafluorbenzolselenonsäure-methylester (2a): Zu einer Suspension von 3.0 g (7.5 mmol) 1f in 30 ml CHCl₃ tropft man eine Lösung von 1.5 g (10.5 mmol) CH₃I in 10 ml CHCl₃. Man rührt 10 h lichtgeschützt bei 20°C, filtriert ausgefallenes AgI ab und entfernt das Lösungsmittel i. Vak. Es verbleibt ein farbloses Öl, welches NMR-spektroskopisch als 1:1-Gemisch aus 2a und 2b identifiziert wurde. Aufgrund sehr ähnlicher physikalischer Eigenschaften sowie einer starken Hydrolyseempfindlichkeit ließ sich das Gemisch nicht auftrennen. Die Charakterisierung beider Produkte erfolgte NMR-spektroskopisch. Die im Gemisch gefundenen Werte für 2b stimmen mit denen der nachfolgenden Synthese für 2b überein.

Umsetzungen von CF_3SO_3Ag mit CH_3I in $CHCl_3$: Zu einer Suspension von 0.97 g (3.77 mmol) Silbertrifluormethansulfonat in 20 ml Chloroform tropft man unter Rühren 1.61 g (11.34 mmol) Methyliodid. Es findet sofort eine quantitative Umsetzung zu Trifluormethansulfonsäure-methylester ⁷⁾ statt. ¹H-NMR-spektroskopische Untersuchungen zeigten, daß unter diesen Reaktionsbedingungen kein Ethylester gebildet wird. – ¹H-NMR (CDCl₃) δ = 4.14 (q, J = 1 Hz; 3 H; CH₃) [Lit. ¹¹⁾ (CCl₄): δ = 4.22].

 $C_2H_3F_3O_3S$ (164.1) Ber. C 14.6 H 1.8 Gef. C 14.3 H 1.7

Pentafluorbenzolselenonsäure-ethylester (2b): 5.0 g (12.4 mmol) 1f werden in 20 ml CHCl₃ suspendiert. Hierzu tropft man eine Lösung von 2.0 g (12.8 mmol) C_2H_3I in 20 ml CHCl₃ und rührt bei 20 °C lichtgeschützt 16 h. Anschließend filtriert man die Feststoffe ab und trennt das Lösungsmittel sowie überschüssiges C_2H_3I i. Vak. ab. Das zurückbleibende Öl ist analysenrein. Ausb. 2.74 g (68%), Schmp. 15 °C. — IR: $\tilde{v}=2990~{\rm cm}^{-1}$ (m), 1645 (s), 1530 (vs), 1505 (vs), 1495 (vs), 1405 (m), 1300 (m), 1105 (vs), 992 (vs), 979 (vs), 939 (vs), 880 (s), 870 (s), 690 (m), 635 (m). — MS (70 eV): m/z (%) = 324, M + (1); 309, $C_6F_5SeCH_2^+$ (12); 184, $C_6F_5OH^+$ (57); 45, $C_2H_5O^+$ (100). $C_8H_5F_5O_3Se$ (323.0) Ber. C 29.6 H 1.5

Pentafluorbenzolselenonsäure-propylester (2c): Zu einer Suspension von 3.0 g (7.5 mmol) 1f in 40 ml CHCl₃ tropft man eine Lösung von 0.50 g (8.3 mmol) n-C₃H₇I in 10 ml CHCl₃. Nach 48 h wird vom Unlöslichen abfiltriert und CHCl₃ sowie überschüssiges n-C₃H₇I i. Vak. entfernt. Der farblose Rückstand besteht aus analysenreinem 2c. Ausb. 1.28 g (51%), Schmp. 18°C.

Gef. C 29.0, 29.8 H 1.4, 1.9

C₉H₇F₅O₃Se (337.0) Ber. C 32.0 H 2.0 Gef. C 33.2 H 2.1

Pentafluorbenzolselenonsäure-trimethylsilylester (2d): Zu einer Suspension von 3.0 g (7.46 mmol) 1f in 50 ml CHCl₃ werden 0.9 g (8.2 mmol) (CH₃)₃SiCl getropft. Nach 4 h werden die Feststoffe über eine Umkehrfritte abfiltriert, und CHCl₃ wird i. Vak. entfernt. 2d bleibt analysenrein als farblose Flüssigkeit zurück. Ausb. 1.79 g (62%), Schmp. 10° C. – IR: $\tilde{v} = 2960$ cm⁻¹ (m), 1640 (m), 1494 (vs), 1402 (m), 1298 (m), 1259 (s), 1104 (s), 1052 (m), 989 (vs), 917 (m), 845 (s), 755 (m), 726 (m), 690 (m), 621 (m).

C₉H₉F₅O₃SeSi (367.1) Ber. C 29.4 H 2.4 Gef. C 28.7 H 2.2

Pentafluorbenzolselenonsäure-dimethylamid (2e): In einem mit Magnetrührstab versehenen Carius-Rohr mit Young-Hahn werden 1.0 g (3.1 mmol) 2b, gelöst in 20 ml CHCl₃, vorgelegt. Hierzu kondensiert man 0.15 g (3.3 mmol) (CH₃)₂NH, läßt die Reaktionsmischung auf -40°C aufwärmen und rührt 2 h. Anschließend werden alle flüchtigen Bestandteile bei -20°C durch Destillation i. Vak. abgetrennt. Es bleibt ein Gemisch aus 2e und 2f zurück, das sich oberhalb -20°C zersetzt und nicht aufgetrennt werden konnte. Die Charakterisierung erfolgte mittels Tieftemperatur-NMR-Spektroskopie (Tab. 1). Die für 2e ermittelten Werte stimmen mit denen einer authentischen Probe überein.

4-(Dimethylamino)-2,3,5,6-tetrafluorbenzolselenonsäure-dimethylamid (2f): Zu 1.0 g (3.1 mmol) 2b in einem Carius-Rohr mit Young-Hahn kondensiert man 0.30 g (6.6 mmol) NH(CH₃)₂ und erwärmt die Mischung auf $-40\,^{\circ}$ C. Nach 2 h werden die flüchtigen Bestandteile durch Destillation i. Vak. abgetrennt. 2f bleibt als gelber Feststoff zurück, der sich bei $-20\,^{\circ}$ C rasch zu dem entsprechenden Diselenid zersetzt. Ausb. 0.98 g (91%). – IR: $\tilde{v}=3430$ cm⁻¹ (m, br), 2990 (m, br), 2430 (m, br), 1620 (s), 1525 (s), 1480 (vs), 1431 (s), 1386 (m), 1230 (vs), 1075 (vs), 1025 (m), 972 (vs), 914 (vs), 860 (m), 561 (m), 420 (m). – MS (70 eV): m/z (%) = 348, M⁺ (7); 272, (CH₃)₂NC₆F₄Se⁺ (22), 208, (CH₃)₂NC₆F₄O⁺ (100); 192, (CH₃)₂NC₆F₄ (54). – Hydrolyse von 0.50 g (1.4 mmol) führt quantitativ zu [4-(CH₃)₂NC₆F₄SeO₃][NH₂(CH₃)₂] (2g). Das Salz wird bei $-40\,^{\circ}$ C aus Pentan umkristallisiert, Schmp. 83 °C.

C₁₀H₁₂F₄N₂O₃Se (365.0) Ber. C 32.7 N 7.7 H 3.8 Gef. C 32.8 N 7.9 H 3.8

Pentafluorbenzolseleninonylchlorid: Zu der Suspension von 2.84 g (10.1 mmol) C₆F₅SeO₂H in 70 ml CCl₄ tropft man 1.5 g (10.2 mmol) SO₂Cl₂ und erhitzt 3 h unter Rückfluß. Danach trennt man alle unlöslichen Bestandteile über eine Umkehrfritte ab. Nach Entfernen von CCl₄ i. Vak. kristallisiert das Produkt als gelber Farbstoff.

Pentafluorbenzolselenonsäure 689

Ausb. 1.87 g (62%), Schmp. 64°C. - IR: $\tilde{v} = 1635$ cm⁻¹ (m), 1519 (s), 1490 (vs), 1387 (m), 1285 (m), 1090 (s), 988 (vs), 884 (s), 436 (m), 398 (s), 363 (s), 324 (s), 297 (s). - MS: m/z (%) = 298, M⁺ (2); 282, $C_6F_5SeCl^+$ (14); 263, $C_6F_5SeO^+$ (24), 247, $C_6F_5Se^+$ (59); 183, $C_6F_4Cl^+$ (100).

C₆ClF₅OSe (297.5) Ber. C 24.1 Gef. C 24.1, 23.7

Trifluormethanselenonsäure-ethylester (3a): Zu einer eisgekühlten Suspension von 2.0 g (6.6 mmol) CF_3SeO_3Ag in 50 ml CHCl₃ tropft man unter Argon 1.1 g (7.0 mmol) C_2H_3I und rührt 16 h im Eisbad. Feststoffe werden über eine Umkehrfritte abgetrennt und die flüchtigen Bestandteile i. Vak. bei $-10^{\circ}C$ entfernt. Der Ester bleibt analysenrein als farblose Flüssigkeit zurück. Ausb. 0.94 g (63%), Schmp. $5^{\circ}C$. – IR: $\tilde{v} = 2980$ cm⁻¹ (m), 1228 (vs), 1102 (s), 1003 (s), 930 (s), 872 (s), 773 (s), 670 (m), 620 (m).

C₃H₅F₃O₃Se (225.0) Ber. C 15.9 H 2.2 Gef. C 15.7 H 2.2

Trifluormethanselenonsäure-dimethylamid (3b): In einem mit Magnetrührstab verschenen Carius-Rohr mit Young-Hahn legt man 1.0 g (4.4 mmol) 3a, gelöst in 20 ml CHCl₃, vor und kondensiert hierzu i. Vak. 0.20 g (4.4 mmol) (CH₃)₂NH. Die Mischung wird

auf -40°C erwärmt und 4 h gerührt. Danach werden die flüchtigen Bestandteile i. Vak. durch Kondensation abgetrennt, wonach **3b** als farblose Flüssigkeit zurückbleibt. Sie zersetzt sich bei -20°C rasch und wurde daher Tieftemperatur-NMR-spektroskopisch charakterisiert (s. Tab. 1).

[283/89]

¹⁾ M. Stoecker, F. Krafft, Ber. Dtsch. Chem. Ges. 39 (1906) 2200.

²⁾ M. L. Bird, F. Challenger, J. Chem. Soc. 1942, 572.

A. Haas, H.-U. Weiler, Chem. Ber. 118 (1985) 943.
 O. E. Kostiner, M. L. N. Reddy, D. S. Urch, A. G. Massey, J. Organomet. Chem. 15 (1968) 383.

⁵⁾ G. G. Furin, T. V. Terent'eva, G. G. Yakobson, Izv. Sibirsk. Otd. Akad. Nauk., SSSR Ser. Khim. Nauk 1972, 78.

W. D. Emmons, A. F. Ferris, J. Am. Chem. Soc. 75 (1953) 2257.
 T. Gramstad, R. N. Haszeldine, J. Chem. Soc. 1957, 4063.

⁸⁾ Aufgrund unvollständiger Verbrennung wurden von diesen Verbindungen keine befriedigenden Elementaranalysen erhalten.

⁹⁾ W. Beck, K. H. Stetter, S. Tadros, K. E. Schwarzhaus, Chem. Ber. 100 (1967) 3944.

W. Beck, K. H. Stetter, Inorg. Chem. Nucl. Lett. 2 (1966) 383.
 C. D. Beard, K. Baum, V. Grakauskas, J. Org. Chem. 38 (1973) 3673.